Subcellular spectroscopic markers, topography and nanomechanics of human lung cancer and breast cancer cells examined by combined confocal Raman microspectroscopy and atomic force microscopy.

نویسندگان

  • Gerald D McEwen
  • Yangzhe Wu
  • Mingjie Tang
  • Xiaojun Qi
  • Zhongmiao Xiao
  • Sherry M Baker
  • Tian Yu
  • Timothy A Gilbertson
  • Daryll B DeWald
  • Anhong Zhou
چکیده

The nanostructures and hydrophobic properties of cancer cell membranes are important for membrane fusion and cell adhesion. They are directly related to cancer cell biophysical properties, including aggressive growth and migration. Additionally, chemical component analysis of the cancer cell membrane could potentially be applied in clinical diagnosis of cancer by identification of specific biomarker receptors expressed on cancer cell surfaces. In the present work, a combined Raman microspectroscopy (RM) and atomic force microscopy (AFM) technique was applied to detect the difference in membrane chemical components and nanomechanics of three cancer cell lines: human lung adenocarcinoma epithelial cells (A549), and human breast cancer cells (MDA-MB-435 with and without BRMS1 metastasis suppressor). Raman spectral analysis indicated similar bands between the A549, 435 and 435/BRMS1 including ~720 cm(-1) (guanine band of DNA), 940 cm(-1) (skeletal mode polysaccharide), 1006 cm(-1) (symmetric ring breathing phenylalanine), and 1451 cm(-1) (CH deformation). The membrane surface adhesion forces for these cancer cells were measured by AFM in culture medium: 0.478 ± 0.091 nN for A549 cells, 0.253 ± 0.070 nN for 435 cells, and 1.114 ± 0.281 nN for 435/BRMS1 cells, and the cell spring constant was measured at 2.62 ± 0.682 mN m(-1) for A549 cells, 2.105 ± 0.691 mN m(-1) for 435 cells, and 5.448 ± 1.081 mN m(-1) for 435/BRMS1 cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined AFM/Raman microspectroscopy for characterization of living cells in near physiological conditions

Raman microspectrosopy (RM) is a noninvasive, label-free, molecular spectroscopy method used to record the vibrational spectroscopic fingerprints based on molecular bonds and has been recently applied to characterize living cells. Atomic force microscopy (AFM) is a high-resolution form of scanning probe microscopy that can provide information including surface topography, cell adhesion, and cel...

متن کامل

Differential Attachment of Pulmonary Cells on PDMS Substrate with Varied Features

Cancer is now a global concern, and control of the function of cancer cells is recognized as an important challenge. Although many aggressive chemical and radiation methods are in practice to eliminate cancer cells, most imply severe adverse toxic effects on patients. Taking advantage of natural physical differences between cancer and normal cells might benefit the patient with more specific cy...

متن کامل

Differential Attachment of Pulmonary Cells on PDMS Substrate with Varied Features

Cancer is now a global concern, and control of the function of cancer cells is recognized as an important challenge. Although many aggressive chemical and radiation methods are in practice to eliminate cancer cells, most imply severe adverse toxic effects on patients. Taking advantage of natural physical differences between cancer and normal cells might benefit the patient with more specific cy...

متن کامل

Common Raman Spectral Markers among Different Tissues for Cancer Detection

Introduction Raman spectroscopy is a vibrational spectroscopic technique, based on inelastic scattering of monochromatic light. This technique can provide valuable information about biomolecular changes, associated with neoplastic transformation. The purpose of this study was to find Raman spectral markers for distinguishing normal samples from cancerous ones in different tissues. Materials and...

متن کامل

Nanomechanical Property Maps of Breast Cancer Cells As Determined by Multiharmonic Atomic Force Microscopy Reveal Syk-Dependent Changes in Microtubule Stability Mediated by MAP1B

The Syk protein-tyrosine kinase, a well-characterized modulator of immune recognition receptor signaling, also plays important, but poorly characterized, roles in tumor progression, acting as an inhibitor of cellular motility and metastasis in highly invasive cancer cells. Multiharmonic atomic force microscopy (AFM) was used to map nanomechanical properties of live MDA-MB-231 breast cancer cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 138 3  شماره 

صفحات  -

تاریخ انتشار 2013